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00-682 Warsaw, Poland
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Abstract. Fundamental representations of real simple Poisson Lie groups are Poisson actions
with a suitable choice of the Poisson structure on the underlying (real) vector space. We
study these (mostly quadratic) Poisson structures and corresponding phase spaces (symplectic
groupoids).

0. Introduction

The recent development of non-commutative geometry and, in particular, the theory of
quantum groups, raises the question of what happens with known models of physical systems
when we pass from usual configurations to non-commutative ones. For classical mechanical
systems, this means that we allow the configuration space to be a Poisson manifold (positions
need not commute). The phase space corresponding to a usual configuration manifold
(Poisson structure equal to zero) is its cotangent bundle. For a general Poisson manifold,
the phase space plays the role of the corresponding symplectic groupoid (if it exists, it is
unique—if one restricts to oneself connected and simply connected fibres).

It is natural first to consider mechanical systems with symmetry. In the Poisson case
a symmetry is described by a Poisson action (of a Poisson group). This requirement
imposes a reasonable limitation on the choice of the Poisson structure and actually leads to
a construction of it.

In this paper we construct Poisson structures on real finite-dimensional vector spaces (the
configuration spaces), such that the action of a chosen linear simple Poisson group becomes
a Poisson action (the Poisson structure on the group is typically given by a standard classical
r-matrix). We also construct the corresponding phase spaces.

1. Preliminaries and notation

For the theory of Poisson Lie groups we refer to [1–5]. Let us recall some basic notions
and facts. We follow the notation used in our previous papers [6–8].

A Poisson Lie groupis a Lie groupG equipped with a Poisson structureπ such that the
multiplication map is Poisson. The latter property is equivalent to the following property
(calledmultiplicativity of π ):

π(gh) = π(g)h+ gπ(h) for g, h ∈ G.
Here π(g)h denotes the right translation ofπ(g) by h etc. This notation will be used
throughout the paper.
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A Poisson Lie group is said to becoboundaryif

π(g) = rg − gr (1)

for a certain elementr ∈
2∧

g. Hereg denotes the Lie algebra ofG. Any bi-vector field of
the form (1) is multiplicative. It is Poisson if and only if

[r, r] ∈
( 3∧

g

)
inv

(the Schouten bracket [r, r] is g-invariant). In this case the elementr is said to be aclassical
r-matrix (on g).

If G is semisimple, any Poisson Lie group structure onG is coboundary. The standard
classicalr-matrix for a simple group—which corresponds to ‘the standard (quantum)q-
deformation’—is given by (cf [9] and proposition 2.1 in [10])

r = c
∑
α>0

Xα ∧X−α
〈Xα,X−α〉 (2)

whereX±α are (positive and negative) root vectors relative to a Cartan subalgebra ing, 〈., .〉
is the Killing form andc is a constant (ifG is compact,X−α = Xα andc is imaginary).

Let (G, π) be a Poisson Lie group. An action ofG on a Poisson manifold(M, πM) is
said to be aPoisson actionif the action mapG×M → M is Poisson. It holds if and only
if the following (G, π)-multiplicativity of πM is satisfied:

πM(gx) = π(g)x + gπM(x) for g ∈ G, x ∈ M.

For any fixed actionG×M 3 (g, x) 7→ gx ∈ M and anyk-vectorw ∈
k∧

g we denote by
wM the associatedk-vector field onM:

wM(x) := wx.

2. The problem

The classicalr-matrices for simple Lie groups likeSL(n,R), SO(n,R) and SU(n) are
relatively well investigated (in the following we shall consider mainly the standardr-
matrices (2), which indeed represent the non-trivial part of all classicalr-matrices). In order
to consider mechanical systems based on Poisson symmetry (typically being a ‘deformation’
of some ordinary symmetry), we first have to deal with the following problems.

(i) Given an actionG ×M → M (the ordinary symmetry) and a Poisson structureπ

onG making it a Poisson Lie group(G, π) (a ‘deformation’ of the group), find all Poisson
structuresπM onM such that the action becomes Poisson (the ‘deformed’ symmetry).

(ii) In cases whenM plays the role of the configurational manifold, construct the phase
space Ph(M, πM) i.e. the symplectic groupoid of(M, πM).

For symplectic groupoids, phase spaces of Poisson manifolds and so on we refer to
[11–16].

For simplicity, in this paper we consider only the essential part of the structure of
the symplectic groupoid (which is, in most cases, sufficient to formulate the classical
model). Namely, for a given Poisson manifold(M, πM) of dimensionk we shall construct
a symplectic manifoldS of dimension 2k, a surjective Poisson map fromS to M and its
Lagrangian section. In this case, we shall simply callS the phase spaceof (M, πM).
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3. Fundamental bi-vector field

LetG×M → M be an action. Letr ∈
2∧

g be a classicalr-matrix andπ the corresponding
Poisson structure (1) (this notation is fixed throughout the section).

Lemma 3.1. (1) rM is (G, π)-multiplicative.
(2) Any (G, π)-multiplicative πM is given byπM = rM + πinv, whereπinv is a G-

invariant bi-vector field.
(3) [rM, πinv] = 0.
(4) [rM, rM ] = [r, r]M .

Point (1) follows fromr(gx) = (rg − gr)x + g(rx). Point (3) follows from the fact
that rM is built out of the fundamental vector fields of the action (and these vector fields
preserveπinv). From (3) it follows that if bothrM andπinv are Poisson thenπM is also
Poisson. Point (4) follows from the known property of fundamental fields of the action:

[XM, YM ] = [X, Y ]M for X, Y ∈ g

(the Lie bracket ong being defined by identifying elements ofg with the corresponding
right-invariant vector fields onG).

In analogy with fundamental vector fieldsXM , we call rM the fundamental bi-vector
field. It is essential to know whether it is Poisson.

Example 3.2. Poisson Minkowski spaces (Poincar´e group action). Any invariant element

of
3∧

g, whereg = R4 o o(1, 3) is the Poincaŕe Lie algebra, is proportional to

� = gjkglmej ∧ el ∧�km �km := ek ⊗ g(em)− em ⊗ g(ek) ∈ o(1, 3) (3)

(summation convention), where(ej )j=0,...,3 is a basis inM = R4, g is the Lorentz metric
andgjk are the components of the contravariant metric (cf [8, 17]). Since

�M(x) = gjkglmej ∧ el ∧ (ekg(em, x)− emg(ek, x)) = 0

for each classicalr-matrix ong the fundamental bi-vector fieldrM onM is Poisson (because
[rM, rM ] = [r, r]M ∼ �M = 0). By point (2) of lemma 3.1 this is the only(G, π)-
multiplicative bi-vector field onM, since zero is the onlyG-invariant bi-vector field onM.
(Recall also that any Poisson structure onG comes from anr-matrix [8].) In conclusion,
for each Poisson Poincaré group there is exactly one Poisson Minkowski space (see also
[7]). This is also true for the case of arbitrary signature,g = Rp+q o o(p, q), in dimension
n = p + q > 3. (Cf [18] for the quantum case.)

Example 3.3. Poisson Minkowski spaces (Lorentz group action). Classicalr-matrices for
the Lorentz Lie algebrao(1, 3) are classified in [6]. We know that [r, r] = [r−, r−] and it
is non-zero only in the caser− = iλX+ ∧X− (in the classification of [6]) withλ 6= 0,

[r−, r−] = −λ2[X+ ∧X−, X+ ∧X−] = 2λ2X+ ∧ [X+, X−] ∧X− = 4λ2X+ ∧H ∧X−
whereX+, X−, H is the standard basis:

H = 1

2

[
1 0
0 −1

]
X+ =

[
0 1
0 0

]
X− =

[
0 0
1 0

]
.

Considering the usual action of the Lorentz Lie algebra on the Minkowski spaceM = R1+3,
we obtain

(X+ ∧X−)M(x) = 2�01(x) ∧�13(x)
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where (see (3))

�jk(x) = ejxk − ekxj .
Since�jk(x), �kl(x) and�lj (x) are linearly dependent for each fixedj, k, l,

(X+ ∧H ∧X−)M(x) = −2�30(x) ∧�01(x) ∧�13(x) = 0

(HM(x) = �30(x)), but

(X+ ∧ JH ∧X−)M(x) = −2�21(x) ∧�01(x) ∧�13(x)

(J is the complex structure ing) is not zero. It follows thatrM is Poisson if and only ifλ2

is real, i.e. eitherα or β in [6] has to be zero. Moreover, since the only Lorentz invariant
bi-vector field onM is zero,rM is the only (G, π)-multiplicative field onM. It follows
that for α · β 6= 0 there is no Poisson structure onM such that the action is Poisson. (A
similar fact should hold for quantum Lorentz groups [19]:q should be real or of modulus
one.)

Returning to a general technique, now consider two special cases ofr-matrices.

3.1. The triangular case:[r, r] = 0

Let ξ : T ∗M → M be the cotangent bundle projection and letπ0 denote the canonical
Poisson structure ofT ∗M. In the triangular case:

(i) rM is Poisson (by lemma 3.1(4));
(ii) rT ∗M is Poisson (also lemma 3.1(4));ξ∗rT ∗M = rM ;
(iii) πT ∗M := rT ∗M + π0 is Poisson (by lemma 3.1(3));ξ∗πT ∗M = rM .
This means that problems formulated in section 2 are relatively easily solved. For

the phase space one can take the open subset of points inT ∗M, in which the Poisson
structureπT ∗M is non-degenerate (it is certainly non-degenerate in a neighbourhood of the
zero section—that is why we have addedπ0 in (iii). (To construct the symplectic groupoid
one should still find the foliation symplectically orthogonal to the fibres of the projection
and choose points which also have the projection onM along this foliation.)

For another approach to this case, see [16].

3.2. The case of a simpleg

In this case one can use the method of [20] to rewrite the condition [rM, rM ] = 0. Denote

by � the canonical invariant element of
3∧

g. Its Killing transported version to
3∧

g∗ is
defined by

�†(X, Y, Z) = 〈[X, Y ], Z〉.

It is known [21] that all invariant elements of
3∧

g are proportional to�, hence [r, r] ∼ �.
Suppose [r, r] is not zero. ThenrM is Poisson⇔ �M = 0 (in general,�M is just G-
invariant). Now,�x = 0⇔ the composition of linear maps

R �→
3∧

g→
3∧
(g/gx)

is zero⇔ the composition of linear maps

R �∗←
3∧

g←
3∧
(gx)

0
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is zero⇔ the composition of linear maps

R �†←
3∧

g←
3∧
(gx)

⊥

is zero⇔ �†|(gx )⊥ = 0⇔ 〈[X, Y ], Z〉 = 0 forX, Y,Z ∈ g⊥x ⇔ [g⊥x , g
⊥
x ] ⊂ gx . Concluding,

[rM, rM ]x = 0⇐⇒ [g⊥x , g
⊥
x ] ⊂ gx. (4)

The advantage of this method is that we do not have to use the explicit form of�.

Proposition 3.4. In the following three cases, for any classicalr-matrix on g the
fundamental bi-vector fieldrM onM is Poisson:

(1) g = so(n,R), M = Rn

(2) g = sl(n,R), M = Rn

(3) g = sp(n,R), M = R2n.
For g = su(n), M = Cn = R2n, the fundamental bi-vector field is Poisson if and only ifr
is triangular.

Proof. Let e1, . . . , en be the standard basis inRn. The dual basis in(Rn)∗ is denoted by
e1, . . . , en. We consider subsequent cases separately.

(1) g = so(n,R). Setx = en, thengx is spanned by�jk for j, k < n andg⊥x is spanned
by �jn for j < n. It is easy to see that [�jn,�kn] is proportional to�jk, hence it belongs
to gx . This shows (by equation (4)) that [rM, rM ] = 0.

(2) g = sl(n,R). For the samex = en, gx is spanned byenj (the matrix units) for
j < n, but [enj , enk] = 0.

(3) g = sp(n,R). We use the basise1, . . . , en, e
1, . . . , en in M = Rn ⊕ (Rn)∗ ∼= R2n.

We have four types of matrix units defined by

ej
k := ej ⊗ ek ej k := ej ⊗ ek ejk := ej ⊗ ek ejk := ej ⊗ ek

with the action on(x, p) ∈ M = Rn ⊕ (Rn)∗ given explicitly by

ej
k(x, p) = ejxk ej k(x, p) = ejpk ejk(x, p) = ejpk ejk(x, p) = ejxk.

We use the following basis ing = sp(n,R):
ajk := ejk + ekj (j 6 k) bjk := ejk + ekj (j 6 k) dj

k := ej k − ekj . (5)

For x := en, gx is spanned byajk, bjk with j, k < n anddj k with k < n andg⊥x is spanned
by ajn, dnj with j = 1, . . . n. Now, [ajn, akn] = 0 and [dnj , akn] = δjk ann + δjnakn ∈ gx .

We now pass to the case ofg = su(n), with the basis

Fj
k := ej k − ekj Gj

k := i(ej
k + ekj ) Hj := ej+1

j+1− ej j . (6)

For x = en, gx is spanned byFj k, Gjk for j, k < n andHj for j < n− 1 andg⊥x contains
Fj
n, Gjn for j < n (and the component ofHn−1, orthogonal toHj for j < n−1). We have

[F1
n,G1

n] = 2i(e1
1− enn) 6∈ gx.

Actually one can see that

[g⊥x , g
⊥
x ] = gx + 〈i(e1

1− enn)〉
(inclusion (4) is violated only by one dimension). �
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4. Standard r-matrices for sl(n,R) and sp(n,R)

According to equation (2), the standardr-matrix for g = sl(n,R) is given by

r = ε
∑
j<k

ej
k ∧ ekj (ε ∈ R) (7)

(the Cartan subalgebra consists of diagonal matrices and the ‘positive’ roots are contained
in the upper-triangular matrices). Considering the natural action ofg on M := Rn, we
obtain

rM(x) = ε
∑
j<k

xjxkej ∧ ek =
∑
j<k

(xj ej ) ∧ (xkek) (8)

which defines the following Poisson brackets of coordinates

{xj , xk} = εxjxk for j < k. (9)

For g̃ := sp(n,R) we choosedj k (j < k) andajk (j 6 k) as positive roots, which gives
the following expression for the standardr-matrix (we denote it bỹr):

r̃ = ε
( ∑
j<k

dj
k ∧ dkj + 1

2

∑
j,k

ajk ∧ bjk
)

(notation as in (5)). Considering the natural action ofg̃ on M̃ = T ∗M = Rn ⊕ (Rn)∗, we
obtain

r̃M̃ (x, p) = ε
[ ∑
j<k

(ejx
k − ekpj ) ∧ (ekxj − ejpk)+ 1

2

∑
j,k

(ejpk + ekpj ) ∧ (ejxk + ekxj )
]

= ε
[
x ∧ p +

∑
j<k

(xjxkej ∧ ek − pjpkej ∧ ek)

+
∑
j

( ∑
k

(1− sgn(k − j))xkpk
)
ej ∧ ej

]
(10)

which gives the following quadratic Poisson brackets of coordinates and momenta:

{xj , xk} = εxjxk {pj , pk} = −εpjpk for j < k (11)

{xj , pk} = ε
[
xjpk + δj k

( ∑
i

(1− sgn(i − j))xipi
)]
. (12)

Now observe that we can add to (10) the canonical bi-vectorπ0 on T ∗M which modifies
(12) in the following way:

{xj , pk} = −δj k + ε
[
xjpk + δj k

( ∑
i

(1− sgn(i − j))xipi
)]
. (13)

The Poisson structure (11) and (13) projects on (9) and is non-degenerate in a neighbourhood
of (Rn⊕{0})∪ ({0}⊕ (Rn)∗). We have thus constructed the phase space for(M, rM) (M is
indeed embedded into this phase space as a Lagrangian submanifold:pj = 0 arefirst class
constraints).

The quantum version of the above construction has been described in [22].

Remark 4.1. The natural embedding ofg into g̃ (the lift to T ∗M), given by ej k 7→ dj
k,

is a homomorphism of Lie bi-algebras. It follows that the action ofSL(n,R) on T ∗M is
Poisson.
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Remark 4.2. Set∇j := xj ej (no summation). According to (8),rM =
∑
j<k ∇j ∧ ∇k.

We see thatrM is built of commuting vector fields and, actually,rM = ρM , whereρ is
a r-matrix on the abelian Lie algebra spanned by those fields. Sinceρ is triangular and
even abelian [23], one can easily construct the phase space of(M, ρM) using the method
described in section 3.1, or, another method, described in [23]. In the present paper we
shall exploit only the originalr-matrix, because such an approach can be generalized and
applied to more difficult situations (see the following sections).

5. Crossed product phase spaces and quasi-triangularity

Let g be a Lie subalgebra of EndV , whereV = Rn. Any classicalr-matrix ong may be

identified as an element of
2∧

EndV , which can be expressed in terms of matrix units:

r =
∑
jklm

r
jk

lmej
l ⊗ ekm r

jk

lm = −rkjml.

If r is triangular, the phase space of(V , rV ) can be realized onT ∗V = V × V ∗ with the
Poisson structureπT ∗V being the sum of the canonical Poisson structureπ0 and rT ∗V (cf
section 3.1). We then have

πT ∗V (x, p) = π0+
∑
jklm

r
jk

lm(ejx
l − pjel)⊗ (ekxm − pkem)

which leads to the following Poisson brackets:

{xj , xk} =
∑
lm

r
jk

lmx
lxm {pl, pm} =

∑
jk

pjpkr
jk

lm (14)

{xk, pl} = −δkl +
∑
jm

pj r
jk

lmx
m. (15)

We shall also use the following abbreviated notation:

{x1, x2} = rx1x2 {p1, p2} = p1p2r {x1, p2} = −I + p1rx2. (16)

Definition 5.1. Let (M, πM) and(N, πN) be two Poisson manifolds andP := M ×N . If
πP is a Poisson structure onP such that the cartesian projectionsP → M,N are Poisson,
then(P, πP ) is said to be acrossed productof (M, πM) and(N, πN).

We see that in the triangular case, the phase space is a crossed product of(V , rV )

and (V ∗, rV ∗). Note that the Poisson brackets betweenxk andpl (the cross-relations) are
expressed in terms of the samer-matrix asrV andrV ∗ .

In the case of the non-triangularr-matrix (7) for sl(n,R), the phase space turns out to
be also a crossed product of(V , rV ) and (V ∗, rV ∗). The Poisson structure (11) and (13) is
realized onT ∗V and has the following form,

πT ∗V = π0+ rT ∗V +1 (17)

where1 is some additional quadratic term (in the cross-relations), which was not present
in the triangular case.

We shall now explain the nature of the additional term1 in a general situation. We
assume that ourr-matrix is such thatrV and rV ∗ are Poisson (with the explicit form of
Poisson brackets given by (14)) and we ask what conditions should satisfy a bi-vector field
1 of the form

1(x, p) =
∑
jklm

pj1
jk

lmx
mek ∧ el (18)
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on T ∗V , in order to make (17) a Poisson bi-vector field. SincerT ∗V (x, p) = rV (x) +
rV ∗(p)+

∑
jklm pj r

jk

lmx
mek ∧ el , we have

πT ∗V (x, p) = π0+ rV + rV ∗ +
∑
jklm

pjw
jk

lmx
mek ∧ el

wherewjklm = rjklm +1jk

lm. We look therefore for conditions onwjklm under which the brackets

{x1, x2} = rx1x2 {p1, p2} = p1p2r {p1, x2} = I − p1wx2 (19)

(abbreviated notation) satisfy the Jacobi identity. We first consider only the quadratic part

{x1, x2} = rx1x2 {p1, p2} = p1p2r {p1, x2} = −p1wx2 (20)

(it is easy to show that the quadratic part itself must also define a Poisson bracket). Since

{p1, {x2, x3}} = {p1, r23x2x3} = −p1r23(w12+ w13)x1x3

and

{{p1, x2}, x3} − {{p1, x3}, x2} = {−p1w12x2, x3} − {p1w13x3, x2}
= p1(w13w12− w12r23)x2x3− (p1(w12w13− w13r32)x2x3)

the part of the Jacobi identity corresponding to the equality{p1, {x2, x3}} = {{p1, x2}, x3}−
{{p1, x3}, x2} is equivalent to

p1([w12, w13] + [w12, r23] + [w13, r23])x2x3 = 0. (21)

Similarly, the part of the Jacobi identity corresponding to{{p1, p2}, x3} = {p1, {p2, x3}} −
{p2, {p1, x3}} is equivalent to

p1p2([r12, w13] + [r12, w23] + [w13, w23])x3 = 0. (22)

Theorem 5.2. Let (g, r) be quasi-triangular, i.e. there exists an invariant symmetric element
s of g⊗ g such thatw := r + s satisfies the classical Yang–Baxter equation:

[[w,w]] := [w12, w13] + [w12, w23] + [w13, w23] = 0.

Then the brackets (20) satisfy the Jacobi identity (we assume that (14) already satisfy the
Jacobi identity).

Proof. Sinces is invariant,

[w12, s23] + [w13, s23] = 0

(for anyw), hence [[w,w]] = 0 if and only if

[w12, w13] + [w12, r23] + [w13, r23] = 0. (23)

This obviously implies (21). Similarly, since [s12, w13] + [s12, w23] = 0, [[w,w]] is zero if
and only if

[r12, w13] + [r12, w23] + [w13, w23] = 0

which implies (22). �
Remark 5.3. Let r, s andw satisfy the assumptions of theorem 5.2. For anyλ ∈ R, the
element

wλ := r + s + λI ⊗ I ∈ EndV ⊗ EndV (24)

satisfies the Yang–Baxter equation and the proof of theorem 5.2 works also forwλ (oncew
satisfies (23),wλ also satisfies (23)). This means that one can replacew by wλ in (20).
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Theorem 5.4. Under assumptions of theorem 5.2, brackets (19) satisfy the Jacobi identity
if and only if

s
jk

lm = skjlm. (25)

Brackets (19) withw replaced bywλ satisfy the Jacobi identity if and only if

(sλ)
jk

lm = (sλ)kjlm (26)

wheresλ = s + λI ⊗ I .

Proof. In the part of the Jacobi identity corresponding to{p1, {x2, x3}} = {{p1, x2}, x3} −
{{p1, x3}, x2}, we must take care of the linear terms (the cubic terms were taken into account
in the previous theorem). This gives

rx − (rx)t = wx − (wx)t (27)

where(rx)jkl :=∑
m r

jk

lmx
m, ((rx)t)jkl := (rx)kjl , etc. Of course, (27) means thatsx = (sx)t,

i.e. (25). The modificationw 7→ w + λI ⊗ I , s 7→ s + λI ⊗ I leading to condition (26) is
straightforward. The remaining part of the Jacobi identity leads to the same condition.�

Example 5.5. It is convenient to consider (7) as ar-matrix ong = gl(n,R), because it is
easy to write down a natural invariant symmetric element (trace form) ofg⊗g. Taking this
element with the appropriate coefficient,

s = ε
∑
j,k

ej
k ⊗ ekj

we obtain

w = r + s = ε
( ∑

j

ej
j ⊗ ej j + 2

∑
j<k

ej
k ⊗ ekj

)
which satisfies the classical Yang–Baxter equation. There is a unique modificationsλ =
s + λI ⊗ I of s satisfying the symmetry (26), namely forλ = ε:

sλ = sε = s + εI ⊗ I (sε)
jk

lm = ε(δjmδkl + δjl δkm).
Poisson brackets (19) withwλ = wε coincide with (11) and (13).

In conclusion, if(g, r) is quasi-triangular and if there exists a modificationsλ = s+λI⊗I
of s satisfying (26), then one can realize the phase space of(V , rV ) onT ∗V with the Poisson
structure (17), where1 is given by (18) with

1
jk

lm = (sλ)jklm. (28)

It is convenient to introduce the following notation. For each

ρ =
∑
jklm

ρ
jk

lmej
l ⊗ ekm ∈ EndV ⊗ EndV (29)

we denote byρVV ∗ the bi-vector field onT ∗V = V ⊕ V ∗ defined by

ρVV ∗(x, p) =
∑
jklm

pjρ
jk

lmx
mek ∧ el. (30)

Using this notation we can write (17) as follows:

πT ∗V = π0+ rT ∗V + (sλ)V V ∗ = π0+ rV + rV ∗ + (wλ)VV ∗ . (31)
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6. SO(n,R), imaginary quasi-triangularity and the reality condition

In this section we construct the phase space of(V , rV ), whereV := Rn, for a standard
r-matrix onso(n,R), using methods which are completely analogous to those used in [24]
for the investigation of a real differential calculus on quantum Euclidean spaces.

In terms of the ‘angular momentum’ generatorsMj
k := ej k− ekj , the standardr-matrix

on g = so(n,R) is given by

r = ε

4

∑
j<k

(Mj
k +Mj ′

k′) ∧ (Mj
k′ +Mk

j ′) = ε
∑

j<k<j ′
Mj

k ∧Mk
j ′ (32)

wherej ′ := n+ 1− j (the underlying Cartan subalgebra consists of anti-diagonal matrices
in this case).

The abover-matrix is not quasi-triangular in the real sense (this is a characteristic
feature of compact simple groups). Instead, one can find an invariant symmetric elements

of g ⊗ g such thatw := r ± is satisfies the classical Yang–Baxter equation. We say that
(g, r) is imaginary quasi-triangularin this case. In our case,

s = ε

2

∑
j,k

Mj
k ⊗Mk

j = ε
∑
j,k

(ej
k ⊗ ekj − ej k ⊗ ej k)

(the simplest way to obtainw is to extract the first-order term from the knownR-matrix
for the quantumSO(n) group). In order to satisfy (26), we addλI ⊗ I to s with λ = ε:

sλ = ε
∑
j,k

(ej
k ⊗ ekj − ej k ⊗ ej k + ej j ⊗ ekk).

It is clear that (19) withw replaced bywλ := r − isλ defines a complex-valued Poisson
structure onT ∗V ∼= R2n. Equally well we can treat (19) as defining a holomorphic Poisson
structure on the complexification(T ∗V )C ∼= C2n of T ∗V . In the following we shall construct
a real form of this holomorphic Poisson manifold, playing the role of the phase space of
(V , rV ).

We first derive Poisson brackets of coordinates with basicg-invariant functions,

x2 := gjkxjxk p2 := pjpkgjk E := 〈p, x〉 = pjxj
(summation convention assumed), wheregjk is the metric tensor (equal to the Kronecker
delta in our orthonormal basisej ). Sinces is universal (the Killing form), independent of
r (only the coefficient ats depends on the proportionality constant between [r, r] and the

canonical element of
3∧

g), the part

{pj , xk}univ = δj k + iε(Eδj
k + pjxk − xjpk) (33)

of Poisson brackets (19) corresponding toπ0 − i(sλ)V V ∗ is universal. It follows that the
brackets withg-invariant functions are also universal (these functions are Casimirs ofrT ∗V
and it is sufficient to use onlyπ0 − i(sλ)V V ∗ ). From (33), it is now easy to obtain the
following brackets:

{x2, xj } = 0 { 12p2, xj } = pj + iεp2xj

{p2, pj } = 0 {pj , 1
2x

2} = xj + iεx2pj

{E, xj } = xj + 2iεExj − iεx2pj {pj ,E} = pj + 2iεEpj − iεp2xj .

(34)

Let us now introduce one more invariant function:

3 := 1+ 2iεE − ε2x2p2 (35)
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(following the method of [24]). From (34) it follows that

{3, xj } = 2iε3xj {pj ,3} = 2iεpj3. (36)

Denote by Hol(Y ) the algebra of holomorphic functions on a complex manifoldY . Recall
that any holomorphic mapφ: Y → Z (of complex manifolds) defines a linear multiplicative
map8: Hol(Z)→ Hol(Y ) by the pullback:8(f ) = f ◦φ. Similarly, any anti-holomorphic
mapψ : Y → Z defines an anti-linear multiplicative map9: Hol(Z)→ Hol(Y ) by pullback
followed by the complex conjugation:9(f ) = f ◦ φ. Using 3, we define an anti-
holomorphic mapψ from

PC := {(x, p) ∈ (T ∗V )C : 3 6= 0} ⊂ (T ∗V )C
into (T ∗V )C by

9(xj ) = xj 9(pj ) = pj + iεp2xj

3
. (37)

Since

9(p2) = p2

3
9(E) = E + iεp2x2

3
9(3) = 1

3
(38)

the underlying mapψ mapsPC into PC. Moreover, since9(9(xj )) = xj and

9(9(pj )) = 9
(
pj + iεp2xj

3

)
= 3

(
pj + iεp2xj

3
− iε

p2

3
xj

)
= pj

the anti-holomorphic mapψ :PC → PC is an involution. Therefore we can define the
correspondingreal form P of P C as the set of fixed points ofψ :

P := {z ∈ PC : ψ(z) = z}. (39)

The antilinear multiplicative involution9 corresponding to the mapψ will be henceforth
denoted by a star:

(xj )∗ = xj (pj )
∗ = pj + iεp2xj

3
. (40)

Let us collect once more the basic formulae (38):

(p2)∗ = p2

3
E∗ = E + iεp2x2

3
3∗ = 1

3

P := {(x, p) : (xj )∗ = xj , (pj )∗ = pj }.
The fundamental theorem of this section says that the star operation is compatible with the
Poisson brackets (19).

Theorem 6.1. The Poisson structure (19) is real with respect to the star operation (40):

{f, g}∗ = {f ∗, g∗}. (41)

Proof. We have to prove (41) in two cases: (i)f = pj , g = xk and (ii) f = pj , g = pk.
The casef = xj , g = xk is trivial.

(i) We setTj := pj + iεp2xj . Since

{pj , xk}∗ = δj k − (pl)∗(wλ)lkjmxm
and

{(pj )∗, xk} =
{
Tj

3
, xk

}
= 1

3
({Tj , xk} − 2iεTjx

k)
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we have to show that

{Tj , xk} − 2iεTjx
k = 3δj k − Tl(wλ)lkjmxm. (42)

Since

{Tj , xk} = δj k − pl(wλ)lkjmxm + iε(2xjp
k + 2iεp2xjx

k + p2gjlr
lk
mnx

mxn)

the left-hand side of (42) equals

δj
k − pl(wλ)lkjmxm + iε(2(xjp

k − pjxk)+ p2gjlr
lk
mnx

mxn)

whereas the right-hand side of (42) equals

(1+ 2iεE − ε2x2p2)δj
k − (pl + iεp2xl)(wλ)

lk
jmx

m.

Since

pl((wλ)
lk
jm − (wλ)lkjm)xm = 2pl(−isλ)

lk
jmx

m = −2iε(Eδj
k + pjxk − xjpk)

(cf (33)), it follows that (42) is equivalent to

iεp2gjlr
lk
mnx

mxn = −ε2x2p2δj
k − iεp2xl(wλ)

lk
jmx

m

or

igjlr
lk
mnx

mxn = −εx2δj
k − ixl(wλ)

lk
jmx

m.

Taking into account

gjlr
lk
mn = −glmrlkjn (43)

(rlkmn belongs tog with respect to indicesl, m), it means that (42) is equivalent to

iglm(isλ)
lk
jnx

mxn = εx2δj
k

which can be easily verified.
(ii) Since

{Tj ,3} = 2iεTj3

we have {
Tj

3
,
Tk

3

}
= {Tj , Tk}

32
.

Therefore it is sufficient to show that

{Tj , Tk} = TlTmrlmjk .
We have

{Tj , Tk} = {pj , pk} + iεp2({pj , xk} − {pk, xj })+ (iε)2{p2xj , p
2xk}

= plpmrlmjk + iεp2[−plrlajmxmgak + plrlakmxmgaj + 2iε(pjxk − xjpk)]
−ε2p2[p2{xj , xk} + 2(pkxj − xkpj )].

Since

−plrlajmxmgak = plxmrlmjk
(by the argument similar to (43)), we have finally

{Tj , Tk} = plpmrlmjk + iεp2plxm(r
lm
jk − rlmkj )+ (iεp2)2xlxmr

lm
jk

= (pl + iεp2xl)(pm + iεp2xm)r
lm
jk .

�
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Corollary. P is endowed with a structure of a real analytic Poisson manifold. Iff0, g0

are two real analytic functions onP , then their Poisson bracket is defined by

{f0, g0} := {f, g}|P
wheref, g are the (local) holomorphic extensions off0, g0 to PC (by (41), the restriction
of {f, g} to P is real).

P is the required phase space of(V , rV ).

7. Poisson action ofSU (n) on Cn

Here we treatV = Cn as a real manifold (V ∼= R2n). Specifying (2) to the case ofSU(n)
we get the following standardr-matrix (see (6) for the basis ofsu(n))

r = ε 1
2

∑
j<k

(ej
k − ekj ) ∧ J (ej k + ekj ) (44)

whereJ :V → V is the complex structure ofV (multiplication by the imaginary unit). From
now on we setε = 1 (arbitraryε will be restored in the final formulae). It is convenient to
work with the complexificationV C ∼= V ⊕ iV and the complex-linear embedding

V 3 z 7→ zC := 1
2(z − iJz) ∈ V C.

We have

z = zC + zC Jz = i(zC − zC)

and the typical notation

(ek)
C =

(
∂

∂xk

)C

= ∂

∂zk
= ∂k.

Note that

ej
kz = (ej kz)C + (ej kz)C = (ej zk)C + (ej zk)C = zk∂j + z̄k∂̄j .

In this notation, the fundamental bi-vector fieldrV is as follows,

rV (z) = i
∑
jk

sgn(k − j)( 1
2∇j ∧ ∇k − 1

2∇̄j ∧ ∇̄k + |zj |2∂k ∧ ∂̄k) (45)

where∇k := zk∂k, ∇̄k := zk∂̄k.
Lemma 7.1. [rV , rV ](z) = −‖z‖2Jz ∧ π0, where

π0 = 2i
∑
k

∂k ∧ ∂̄k

is the canonical constant bi-vector onV = Cn = R2n.

Proof. Taking into account

[|zj |2∂k ∧ ∂̄k,∇a ∧ ∇b] = z̄j(−∂̄k) ∧ [zj∇k,∇a ∧ ∇b]
= − z̄j ∂̄k ∧ [(zj δak ∂a − zaδja∂k) ∧ ∇b +∇a ∧ (zj δbk ∂b − zbδjb∂k)]
= − |zj |2∂̄k ∧ ∂k ∧ [(δak − δja )∇b − (δbk − δjb )∇a]

and

[|zj |2∂k ∧ ∂̄k, |za|2∂b ∧ ∂̄b] = [zj ∂k ∧ z̄j ∂̄k, za∂b ∧ z̄a∂̄b]
= [zj ∂k, z

a∂b] ∧ z̄j ∂̄k ∧ z̄a∂̄b + zj ∂k ∧ za∂b ∧ [z̄j ∂̄k, z̄
a∂̄b]

= zj ∂k ∧ za∂b ∧ (z̄jδak ∂̄b − z̄aδjb ∂̄k)+ CC
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(+CC means ‘plus complex conjugated terms’), we see that [rV , rV ](z) equals

−
∑
jkab

sgn(k − j) sgn(b − a)

×{|zj |2[(δak − δja )∇b − (δbk − δjb )∇a] + 2|za|2δjb∇b} ∧ ∂k ∧ ∂̄k + CC

= − 2
∑
jkab

sgn(k − j) sgn(b − a)

×[|zj |2(δak − δja )∇b + |za|2δjb∇b] ∧ ∂k ∧ ∂̄k + CC

= − 2
∑
kb

∑
ja

sgn(k − j) sgn(b − a)

×[|zj |2(δak − δja )+ |za|2δjb ]∇b ∧ ∂k ∧ ∂̄k + CC.

Note that∑
ja

sgn(k − j) sgn(b − a)(|zj |2δak − |zj |2δja + |za|2δjb )∇b ∧ ∂k ∧ ∂̄k

=
∑
j

|zj |2(sgn(k − j) sgn(b − k)+ sgn(b − k) sgn(j − b)

+ sgn(j − b) sgn(k − j))
and

sgn(k − j) sgn(b − k)+ sgn(b − k) sgn(j − b)+ sgn(j − b) sgn(k − j) = −1

for b 6= k. It follows that

[rV , rV ](z) = 2‖z‖2
∑
b

(∇b − ∇̄b) ∧
∑
k

∂k ∧ ∂̄k = −‖z‖2
∑
b

i(∇b − ∇̄b) ∧
∑
k

2i∂k ∧ ∂̄k.

�

Corollary. For any classicalr-matrix r̃ on g = su(n) there is a constantc such that
[r̃V , r̃V ] = −c‖z‖2Jz ∧π0. The Poisson structuresπV on V for which the action ofSU(n)
on V is Poisson are exactly bi-vector fields

πV = r̃V +1 (46)

such that the bi-vector field1 on V is SU(n)-invariant and satisfies

[1,1](z) = c‖z‖2Jz ∧ π0. (47)

It is easy to show that allSU(n)-invariant bi-vector fields1 on V are of the following
form:

1 = 1
2aπ0+ 1

2bz ∧ Jz (48)

where a = a(‖z‖2) and b = b(‖z‖2) are arbitrary functions of‖z‖2. We shall write
condition (47) in terms of these functions.

Lemma 7.2. [1,1](z) = ‖z‖2Jz ∧ π0 if and only if

aa′ + b(a − a′t) = t. (49)

Here t ≡ ‖z‖2 and prime means differentiating with respect to the variablet .
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Proof. If K, L are bi-vector fields andf , g are functions, then

[fK, gL] = fg[K,L] − fK(dg) ∧−gK ∧ L(dg) (50)

where byK(dg) we denote the contraction ofK with dg on the first place. In particular,

[fK, fK] = f 2− 2fK ∧K(df ).
Using

π0(
1
2d‖z‖2) = −Jz (z ∧ Jz)( 1

2d‖z‖2) = ‖z‖2Jz

and

[π0, z ∧ Jz] = 2Jz ∧ π0

we obtain

[ 1
2aπ0,

1
2aπ0] = aa′Jz ∧ π0

[bz ∧ Jz, bz ∧ Jz] = 0

[ 1
2aπ0,

1
2bz ∧ Jz] = 1

2b(a − a′‖z‖2)J z ∧ π0.

From this, (49) follows immediately. �

Of course, the easy way to solve (49) is to write

b = t − aa′
a − a′t (51)

but in this way we have no control of regularity over these functions and we do not see
the simplest cases. To pick up the simplest cases, let us consider1 at most quadratic, i.e.
a = a0 + a1t , b = b0, wherea0, a1, b0 are some constants. Inserting this form ofa andb
in (49) gives the following two cases:

(i) a0 = 0, a1 = ±1, b0 arbitrary;
(ii) a0 arbitrary,a1 = ±1, b0 = ∓1.

One of the simplest non-quadratic solutions for1 is the following solution of degree four:
(iii) a = h = constant6= 0, b = t/h.
An example of a non-singular rational solution is given bya = 1− t2 (in this case the

denominator of (51) is positive:a − a′t = 1+ t2).
Another way to pick up a simple case is to assume that1 is (asrV ) tangential to the

spheres‖z‖ = constant. It is easy to show that this conditions holds if and only ifa = bt .
In this case (49) reduces to

ab = t.
It means thata = ±t , b = ±1. This is a special case of type (i) above.

We end by listing the explicit form of the Poisson brackets corresponding to the
mentioned cases. From the general form (46) and (48) with the standardr-matrix (44),
we obtain

{zj , zk} = iεzj zk for j < k (52)

{zj , z̄k} = −iεbzj z̄k for j 6= k (53)

{zj , z̄j} = iε
∑
k

sgn(j − k) · |zk| + iεa − iεb|zj | (54)

(we have restored the parameterε). Now we list the cases which seem to be most interesting.
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(1) PoissonSU(n)-spheres. According to the discussion above, there are only two
Poisson structures onCn solving our problem and tangential to the spheres, namely

{zj , zk} = iεzj zk for j < k

{zj , z̄k} = −iσεbzj z̄k for j 6= k
{zj , z̄j} = iε(σ‖z‖2− σ |z|j +

∑
k

sgn(j − k) · |zk|) = 2σ iε
∑
σk<σj

|zk|2

whereσ = ±1. The functionz 7→ ‖z‖2 is a Casimir function of this Poisson structure (and
can be fixed, which leads to a sphereS2n−1).

(2) Twisted annihilation and creation ‘operators’. Settingh = εa0 in case (ii) above,
we obtain

{zj , zk} = iεzj zk for j < k

{zj , z̄k} = iσεbzj z̄k for j 6= k
{zj , z̄j} = ih+ iε(σ‖z‖2+ σ |z|j +

∑
k

sgn(j − k) · |zk|) = ih+ 2σ iε
∑
σk6σj

|zk|2

whereσ = ±1. This is the Poisson version of the ‘twisted canonical commutation relations’
of [25] (see also [26]). It may describe the phase space of a Poisson deformed harmonic
oscillator.

(3) The non-quadratic brackets corresponding to case (iii) above are given by

{zj , zk} = iεzj zk for j < k (55)

{zj , z̄k} = −i
ε

h
‖z‖2zj z̄k for j 6= k (56)

{zj , z̄j} = iεh+ iε

(
− 1

h
‖z‖2|zj |2+

∑
k

sgn(j − k) · |zk|
)
. (57)

Problem. What is the quantum counterpart of condition (49)? What is the quantum
counterpart of relations (56) and (57)?
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