IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Phase spaces related to standard classical r-matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 1841
(http://iopscience.iop.org/0305-4470/29/8/030)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:11

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger9 (1996) 1841-1857. Printed in the UK

Phase spaces related to standard classicalmatrices

S Zakrzewski

Department of Mathematical Methods in Physics, University of WarsawzaHat,
00-682 Warsaw, Poland

Received 20 November 1995

Abstract. Fundamental representations of real simple Poisson Lie groups are Poisson actions
with a suitable choice of the Poisson structure on the underlying (real) vector space. We
study these (mostly quadratic) Poisson structures and corresponding phase spaces (symplectic
groupoids).

0. Introduction

The recent development of non-commutative geometry and, in particular, the theory of
guantum groups, raises the question of what happens with known models of physical systems
when we pass from usual configurations to non-commutative ones. For classical mechanical
systems, this means that we allow the configuration space to be a Poisson manifold (positions
need not commute). The phase space corresponding to a usual configuration manifold
(Poisson structure equal to zero) is its cotangent bundle. For a general Poisson manifold,
the phase space plays the role of the corresponding symplectic groupoid (if it exists, it is
uniqgue—if one restricts to oneself connected and simply connected fibres).

It is natural first to consider mechanical systems with symmetry. In the Poisson case
a symmetry is described by a Poisson action (of a Poisson group). This requirement
imposes a reasonable limitation on the choice of the Poisson structure and actually leads to
a construction of it.

In this paper we construct Poisson structures on real finite-dimensional vector spaces (the
configuration spaces), such that the action of a chosen linear simple Poisson group becomes
a Poisson action (the Poisson structure on the group is typically given by a standard classical
r-matrix). We also construct the corresponding phase spaces.

1. Preliminaries and notation

For the theory of Poisson Lie groups we refer to [1-5]. Let us recall some basic notions
and facts. We follow the notation used in our previous papers [6-8].

A Poisson Lie groups a Lie groupG equipped with a Poisson structuresuch that the
multiplication map is Poisson. The latter property is equivalent to the following property
(called multiplicativity of x):

7 (gh) = m(g)h + gm(h) forg,h e G.
Here 7(g)h denotes the right translation af(g) by i etc. This notation will be used
throughout the paper.
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A Poisson Lie group is said to l®boundaryif
m(g) =rg—gr 1)

2
for a certain element €\ g. Hereg denotes the Lie algebra @f. Any bi-vector field of
the form (1) is multiplicative. It is Poisson if and only if

3
[r,r] € (/\g)

(the Schouten bracket,[] is g-invariant). In this case the elemenits said to be &lassical
r-matrix (on g).

If G is semisimple, any Poisson Lie group structure(dis coboundary. The standard
classicalr-matrix for a simple group—which corresponds to ‘the standard (quantum)
deformation’'—is given by (cf [9] and proposition 2.1 in [10])

r:cZXa/\X_a (2)

whereX ., are (positive and negative) root vectors relative to a Cartan subalgefpré. in)
is the Killing form andc is a constant (ifG is compactX_, = X, andc is imaginary).

Let (G, ) be a Poisson Lie group. An action 6f on a Poisson manifoldM, 7;,) is
said to be &oisson actionf the action mapG x M — M is Poisson. It holds if and only
if the following (G, r)-multiplicativity of m,, is satisfied:

Ty (gx) = w(g)x + gmm(x) forge G,x e M.

k
For any fixed actiorG x M > (g, x) — gx € M and anyk-vectorw €/\ g we denote by
wy the associated-vector field onM:

wy(x) '= wx.

2. The problem

The classical--matrices for simple Lie groups lik§L(n, R), SO(n,R) and SU (n) are
relatively well investigated (in the following we shall consider mainly the standard
matrices (2), which indeed represent the non-trivial part of all classio@trices). In order

to consider mechanical systems based on Poisson symmetry (typically being a ‘deformation’
of some ordinary symmetry), we first have to deal with the following problems.

(i) Given an actionG x M — M (the ordinary symmetry) and a Poisson structare
on G making it a Poisson Lie grou@G, ) (a ‘deformation’ of the group), find all Poisson
structuresrt,, on M such that the action becomes Poisson (the ‘deformed’ symmetry).

(ii) In cases whenV plays the role of the configurational manifold, construct the phase
space PtWM, ;) i.e. the symplectic groupoid afM, my,).

For symplectic groupoids, phase spaces of Poisson manifolds and so on we refer to
[11-186].

For simplicity, in this paper we consider only the essential part of the structure of
the symplectic groupoid (which is, in most cases, sufficient to formulate the classical
model). Namely, for a given Poisson manifdlt¥, r,,) of dimensionk we shall construct
a symplectic manifoldS of dimension 2, a surjective Poisson map froshto M and its
Lagrangian section. In this case, we shall simply Sathe phase spacef (M, my).
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3. Fundamental bi-vector field

2
Let G x M — M be an action. Let €/\ g be a classicat-matrix andr the corresponding
Poisson structure (1) (this notation is fixed throughout the section).

Lemma 3.1 (1) ry is (G, m)-multiplicative.

(2) Any (G, r)-multiplicative ), is given bymy = ry + win, Wheremin, is a G-
invariant bi-vector field.

3) [ru, minv] = 0.

4) [rssrul = [ 7]y

Point (1) follows fromr(gx) = (rg — gr)x + g(rx). Point (3) follows from the fact
thatry, is built out of the fundamental vector fields of the action (and these vector fields
preserveri,,). From (3) it follows that if bothr,, and mj,, are Poisson them,, is also
Poisson. Point (4) follows from the known property of fundamental fields of the action:

(the Lie bracket org being defined by identifying elements gfwith the corresponding
right-invariant vector fields onG).

In analogy with fundamental vector fields,,;, we call r); the fundamental bi-vector
field. It is essential to know whether it is Poisson.

Example 3.2. Poisson Minkowski spaces (Poiecgmdup action) Any invariant element
of /3\ g, whereg = R* x o(1, 3) is the Poinca Lie algebra, is proportional to
Q=g"g"e; et AQum Qi = ek ® glewm) — em ® glex) € 0(1, 3) ®3)
(summation convention), where;);—o,...3 is a basis inM = R*, g is the Lorentz metric

andg/* are the components of the contravariant metric (cf [8, 17]). Since

Qu(x) = g/*g"e; ner A (erg(en, x) — engler, x)) =0
for each classical-matrix ong the fundamental bi-vector field, on M is Poisson (because
[rae, vl = [rorly ~ Qu = 0). By point (2) of lemma 3.1 this is the onlyG, 7)-
multiplicative bi-vector field oM, since zero is the onlg-invariant bi-vector field on/.
(Recall also that any Poisson structure @rcomes from an--matrix [8].) In conclusion,
for each Poisson Poind@agroup there is exactly one Poisson Minkowski space (see also

[7]). This is also true for the case of arbitrary signatyre; R?*? x o(p, ¢), in dimension
n=p+q > 3. (Cf [18] for the quantum case.)

Example 3.3. Poisson Minkowski spaces (Lorentz group actioBlassicalr-matrices for
the Lorentz Lie algebra(l, 3) are classified in [6]. We know that,[r] = [r_,r_] and it
is non-zero only in the case = iAX, A X_ (in the classification of [6]) withh # O,

[re,r.] = =2 Xs AX_ Xy AX ] =22X  A[Xo, X JAX. =402X, AHAXC

whereX ., X_, H is the standard basis:

111 o 0 1 00
H‘z[o —1} X*‘[o o] X‘_[l o]
Considering the usual action of the Lorentz Lie algebra on the Minkowski sifageR+3,

we obtain

(X1 A X )m(x) = 2R01(x) A Q13(x)
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where (see (3))
Qi (x) = ejx; — erx;.
Since Qi (x), Qu(x) and;(x) are linearly dependent for each fixgdk, I,
Xy ANHAX Yy(x) = —2Q30(x) A Qo1(x) A Q13(x) =0
(Hum(x) = Q30(x)), but
(X4 AJTH A X )u(x) = —2Q21(x) A Qo1(x) A Q13(x)

(J is the complex structure ig) is not zero. It follows that,, is Poisson if and only i#?

is real, i.e. eitherr or B in [6] has to be zero. Moreover, since the only Lorentz invariant
bi-vector field onM is zero,ry, is the only (G, =)-multiplicative field onM. It follows
that foro - B8 # 0 there is no Poisson structure @h such that the action is Poisson. (A
similar fact should hold for quantum Lorentz groups [19]should be real or of modulus
one.)

Returning to a general technique, now consider two special casematrices.

3.1. The triangular casefr,r] =0

Let £&:T*M — M be the cotangent bundle projection and igt denote the canonical
Poisson structure dof*M. In the triangular case:

(i) ry is Poisson (by lemma 3.1(4));

(ii) r7+p is Poisson (also lemma 3.1(4%rr+m = ru;

(i) 7wp+p i= ryey + 7o is Poisson (by lemma 3.1(3¥irpy = ruy.

This means that problems formulated in section 2 are relatively easily solved. For
the phase space one can take the open subset of poirfisMh in which the Poisson
structurerr,y IS non-degenerate (it is certainly non-degenerate in a neighbourhood of the
zero section—that is why we have addeglin (iii). (To construct the symplectic groupoid
one should still find the foliation symplectically orthogonal to the fibres of the projection
and choose points which also have the projectionbmlong this foliation.)

For another approach to this case, see [16].

3.2. The case of a simp}e

In this case one can use the method of [20] to rewrite the conditignrf,] = O. Denote

by Q the canonical invariant element ¢f\ g. lts Killing transported version tq\ gt is
defined by

Ql(x,Y,2) = (X, Y], 2).
3
It is known [21] that all invariant elements ¢f g are proportional ta2, hence f, r] ~

Suppose 1, r] is not zero. Thery,, is Poissons Q) = 0 (in general,Q, is just G-
invariant). Now,Qx = 0 < the composition of linear maps

3 3
R3NAg— N\ @80

is zero< the composition of linear maps

.3 3
REN </ @)°
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is zero< the composition of linear maps

R A g @
is zeros Qf|,. =04 ([X,Y],Z) =0for X, Y, Z € g+ & [g+, )] C g.. Concluding,
[, rulx = 0= [g7, 671 C g @
The advantage of this method is that we do not have to use the explicit fofn of

Proposition 3.4 In the following three cases, for any classicaimatrix on g the
fundamental bi-vector field,; on M is Poisson:

QD g=som,R), M =R"

2)g=sl(n,R), M =R"

(3) g =sp(n,R), M =R,
Forg = su(n), M = C" = R?, the fundamental bi-vector field is Poisson if and only if
is triangular.

Proof Letey,...,e, be the standard basis R*. The dual basis ifR")* is denoted by
el, ..., e". We consider subsequent cases separately.

(1) g = so(n, R). Setx = ¢,, theng, is spanned by, for j, k < n andg; is spanned
by @, for j < n. Itis easy to see thaty;,, €] is proportional tof2;,, hence it belongs
to g.. This shows (by equation (4)) that)f, ry] = 0.

(2) g = sl(n,R). For the samex = ¢,, g, is spanned by,/ (the matrix units) for
j <n,butle,’,e,f] =0.

(3) g = sp(n,R). We use the basiey, ...,e,, e, ...,e" in M = R" @ (R")* = R?.
We have four types of matrix units defined by

ejk =6 Q® ek ejk = e/ ® ey ejx =e Qe ek = e/ ® e~

with the action on(x, p) e M = R" & (R")* given explicitly by

ef(xr,p)=ext i py=ep eple,p =ep Fx, p) =elxt,

We use the following basis ig = sp(n, R):

ajr = ejx +exj (j < k) bk = etk M (j < k) dif i=e* — ek (5)

Forx :=e,, g, is spanned by, b/* with j, k < n andd;* with k < n andg; is spanned
by aj, d,’ with j =1,...n. Now, [a;,, ax,] = 0 and H,7, axn] = 8] ann + Siaxn € gy
We now pass to the case gf= su(n), with the basis

k. k j ko o,k j . j+1 j
Fi"i=¢" — ¢ G;" =i(ej" +e’) Hi =ej11/"" — ¢’ (6)

Forx = e,, g, is spanned by;*, G;* for j,k <n and H; for j <n — 1 andg; contains
F;", G;" for j < n (and the component df,_1, orthogonal toH; for j < n—1). We have

[F1", G1"] = 2i(er* — e,") & gs.
Actually one can see that
[giv gi] = 9x + (i(ell - enn))

(inclusion (4) is violated only by one dimension). O
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4. Standard r-matrices for sl(n, R) and sp(n, R)

According to equation (2), the standaramatrix for g = sl(n, R) is given by
r:SZejk/\ekj (e eR) (7)
<k

(the Cartan subalgebra consists of diagonal matrices and the ‘positive’ roots are contained
in the upper-triangular matrices). Considering the natural actiop oh M = R", we
obtain

ru(x) =¢ Zx-ixkej Aep = Z(xjej) A (xFer) (8)
Jj<k Jj<k
which defines the following Poisson brackets of coordinates

k for j < k. 9)

{x/, x*} = ex/x

Forg:=sp(n, R) we chooseijk (j < k) andaj; (j < k) as positive roots, which gives
the following expression for the standarématrix (we denote it by):

F= g<2d_,-’< A+ 3 ap /\bfk>
Jj<k J.k

(notation as in (5)). Considering the natural actionjasn M = T*M = R" & (R")*, we

obtain

Fia(x, p) = 8[ D (eix* — ek pp) Alex’ —elp) + 3 Y (ejpic+ expi) A (elxk + ekxf)]
j<k Jik

= S[X Ap—+ Z(x-kaej A e — pjpke-i N
Jj<k

+ Y (L a-samk— nrtp e nel| (10
7 T

which gives the following quadratic Poisson brackets of coordinates and momenta:

{x/, x*) = exixk {pj, px} = —€p; pr for j <k (11)

{Xj,Pk}=8[ijk+5jk<2(1—59l'(i—j))xil?i>i|- (12)

Now observe that we can add to (10) the canonical bi-veggoon T*M which modifies
(12) in the following way:

o, pi) = =8k + s[xfpk + 8fk(2(1 — sgni — j))xfpi)}. (13)

The Poisson structure (11) and (13) projects on (9) and is non-degenerate in a neighbourhood
of (R" @ {0}) U ({0} & (R")*). We have thus constructed the phase spacéMar-y,) (M is
indeed embedded into this phase space as a Lagrangian submapifetdd arefirst class
constraints).

The quantum version of the above construction has been described in [22].

Remark 4.1 The natural embedding af into § (the lift to 7*M), given bye;* > d;,
is @ homomorphism of Lie bi-algebras. It follows that the actionSéfin, R) on T*M is
Poisson.
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Remark 4.2 SetV; := x’/¢; (no summation). According to (8)y = Zj<k Vi A Vi.

We see that, is built of commuting vector fields and, actuallyy, = pu, Wherep is

a r-matrix on the abelian Lie algebra spanned by those fields. Sinisetriangular and

even abelian [23], one can easily construct the phase spa@d,qf),) using the method
described in section 3.1, or, another method, described in [23]. In the present paper we
shall exploit only the original--matrix, because such an approach can be generalized and

applied to more difficult situations (see the following sections).

5. Crossed product phase spaces and quasi-triangularity

Let g be a Lie subalgebra of Efd, whereV = R". Any classicalr-matrix ong may be
2
identified as an element of EndV, which can be expressed in terms of matrix units:

=Yl war =il
jkim
If » is triangular, the phase space @f, ry) can be realized of*V = V x V* with the
Poisson structurery:y being the sum of the canonical Poisson structugeand ry-y (cf
section 3.1). We then have

ik
sy (x, p) = mo + Zrljm (ejxl — p,-e[) ® (exx™ — pre™)

Jjklm
which leads to the following Poisson brackets:
=T ppal =) pipiriy (14)
Im Jjk
o = =8+ D prea. (15)
jm

We shall also use the following abbreviated notation:
{x1, x2} = rx1xz {P1, p2} = p1por {x1, p2} = =1 + pirxz.  (16)

Definition 5.1 Let (M, my) and (N, =) be two Poisson manifolds an®l := M x N. If
mp is a Poisson structure oP such that the cartesian projectioRs— M, N are Poisson,
then (P, mp) is said to be arossed producbf (M, my) and (N, y).

We see that in the triangular case, the phase space is a crossed product-of
and (V*, ry+). Note that the Poisson brackets betwaénand p; (the cross-relations) are
expressed in terms of the samenatrix asry andry-.

In the case of the non-triangularmatrix (7) forsi(n, R), the phase space turns out to
be also a crossed product 6f, ry) and (V*, ry+). The Poisson structure (11) and (13) is
realized onT*V and has the following form,

JTT*V=7T0+I"T*V+A (17)

where A is some additional quadratic term (in the cross-relations), which was not present
in the triangular case.

We shall now explain the nature of the additional teamin a general situation. We
assume that our-matrix is such thaty andry. are Poisson (with the explicit form of
Poisson brackets given by (14)) and we ask what conditions should satisfy a bi-vector field
A of the form

Ax, p) = Z ijlj,ﬁxmek N (18)
Jjkim
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on T*V, in order to make (17) a Poisson bi-vector field. Simgey (x, p) = rv(x) +
rve(P) + 3 ikim pjr{,i‘x”’ek Ael, we have

ik
mry(x, p) =m0 +ry +rys + Z pjwi, x"ep Al
jm

Jk

Im*

wherew]* =/ + AJX. We look therefore for conditions om;* under which the brackets
{x1, X2} = rxyxz {P1, p2} = p1por {p1,x2} =1 — prwx2 (19
(abbreviated notation) satisfy the Jacobi identity. We first consider only the quadratic part
{x1, x2} = rx1xz {p1. P2} = p1por {p1. x2} = —p1wx2 (20)
(it is easy to show that the quadratic part itself must also define a Poisson bracket). Since
{p1, {x2, x3}} = {p1, raaxaxs} = — prras(wiz + wiz)x1xs
and
{{p1, x2}, x3} — {{p1, x3}, x2} = {—prw1axz, x3} — {prw1axs, x2}
= p1(wizwiz — wiarzz)xzxs — (p1(wi2wiz — wiarzz)x2xs)

the part of the Jacobi identity corresponding to the equélity {x», x3}} = {{p1, x2}, x3} —
{{p1, x3}, x2} is equivalent to

p1([wiz, wiz] + [wiz, r23] + [wis, r23])x2x3 = 0. (21)

Similarly, the part of the Jacobi identity corresponding{{p1, p2}, x3} = {p1, {p2, x3}} —
{p2, {p1, x3}} is equivalent to

p1p2([r12, wig] + [r12, was] + [wis, wes])xz = 0. (22)

Theorem 5.2 Let (g, r) be quasi-triangular, i.e. there exists an invariant symmetric element
s of g ® g such thatw := r + s satisfies the classical Yang—Baxter equation:

[w, w]] = [wiz, wig] + [w12, w23] + [wis, wa3] = 0.

Then the brackets (20) satisfy the Jacobi identity (we assume that (14) already satisfy the
Jacobi identity).

Proof. Sinces is invariant,
[w12, s23] + [w1a, 523] = 0
(for any w), hence [, w]] = 0 if and only if
[wi2, wig] + [w1z, r23] + [wis, r23] = 0. (23)

This obviously implies (21). Similarly, sincep, wis] + [s12, w2z] = 0, [[w, w]] is zero if
and only if

[r12, w13] + [r12, wa3] + [w1s, was] =0
which implies (22). O

Remark 5.3 Letr, s andw satisfy the assumptions of theorem 5.2. For any R, the
element

wy, ' =r+s+Al®I € EndV @ EndV (24)

satisfies the Yang—Baxter equation and the proof of theorem 5.2 works alag {encew
satisfies (23)w; also satisfies (23)). This means that one can replaty w; in (20).
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Theorem 5.4 Under assumptions of theorem 5.2, brackets (19) satisfy the Jacobi identity
if and only if

s/,ﬁ = slk,i (25)
Brackets (19) withw replaced byw, satisfy the Jacobi identity if and only if

(500 = (531 (26)
wheres, =s + A1 Q I.

Proof. In the part of the Jacobi identity corresponding{ia, {x2, x3}} = {{p1, x2}, x3} —
{{p1, x3}, x2}, we must take care of the linear terms (the cubic terms were taken into account
in the previous theorem). This gives

rx — (rxo)t = wx — (wx)! (27)

where(rx)/* := Y rlfxm (rx)H/* := (rx)}, etc. Of course, (27) means that = (sx)",
i.e. (25). The modificationv — w+ Al ® I, s — s + A1 ® I leading to condition (26) is
straightforward. The remaining part of the Jacobi identity leads to the same condifion.

Example 5.5 It is convenient to consider (7) asramnatrix ong = gl(n, R), because it is
easy to write down a natural invariant symmetric element (trace forrng)gof. Taking this
element with the appropriate coefficient,

s = EZejk ®€k‘i
ok
we obtain
w=r+s zs(Zejj ®e;’ —I—ZZejk@ekj)
j <k

which satisfies the classical Yang—Baxter equation. There is a unique modifieatien
s + Al ® I of s satisfying the symmetry (26), namely far= &:

s =5, =s+el®1 (se)]k = e(5].5F + 57 8F).

Poisson brackets (19) witty, = w, coincide with (11) and (13).

In conclusion, if(g, r) is quasi-triangular and if there exists a modificatipr= s+AI® 1
of s satisfying (26), then one can realize the phase spac€¥,af,) on 7*V with the Poisson
structure (17), where\ is given by (18) with

Ay = () (28)
It is convenient to introduce the following notation. For each
p=> pie ®e € EndV @ EndV (29)
Jjklm

we denote bypyy- the bi-vector field orr*V = V & V* defined by

pyve(x.p) =Y pipipx" e ne. (30)
Jjklm

Using this notation we can write (17) as follows:

sy =70 + Irrev + (S ) vy = 7o + ry + rys + (w))yy=. (31)
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6. SO(n, R), imaginary quasi-triangularity and the reality condition

In this section we construct the phase spacdlafry), whereV = R", for a standard
r-matrix onso(n, R), using methods which are completely analogous to those used in [24]
for the investigation of a real differential calculus on quantum Euclidean spaces.

In terms of the ‘angular momentum’ generatdfs‘ := ¢;* — ¢;/, the standara-matrix
on g = so(n, R) is given by

r= %Z(M/‘ + MY A M+ M) = Z M* A M (32)
<k Jj<k<j’
wherej’ :=n+ 1 — j (the underlying Cartan subalgebra consists of anti-diagonal matrices
in this case).

The abover-matrix is not quasi-triangular in the real sense (this is a characteristic
feature of compact simple groups). Instead, one can find an invariant symmetric element
of g ® g such thatw := r + is satisfies the classical Yang—Baxter equation. We say that
(g, r) is imaginary quasi-triangularin this case. In our case,

(the simplest way to obtaim is to extract the first-order term from the knowRrmatrix
for the quantumS O (n) group). In order to satisfy (26), we add ® I to s with A = &:

k j k k j k
s)\=8§ (e ®er’ —ej" ®ei" + e/ ®er).
j.k

It is clear that (19) withw replaced byw, := r —is, defines a complex-valued Poisson
structure on7*V = R?". Equally well we can treat (19) as defining a holomorphic Poisson
structure on the complexificatiqi™*V)© = C2* of T*V. In the following we shall construct
a real form of this holomorphic Poisson manifold, playing the role of the phase space of
(V,rv).

We first derive Poisson brackets of coordinates with bgsiovariant functions,

2

x4 = gjkxka

p? = pipeg’t E = (p,x)=pjx’
(summation convention assumed), whete is the metric tensor (equal to the Kronecker

delta in our orthonormal basig). Sinces is universal (the Killing form), independent of
r (only the coefficient ak depends on the proportionality constant between][and the

3
canonical element of\ g), the part
{(pj» X Yuniv = 85 +ie(E8;* + pjx* — x; pb) (33)

of Poisson brackets (19) corresponding®— i(sy)yy+ is universal. It follows that the
brackets withg-invariant functions are also universal (these functions are Casimirs of
and it is sufficient to use onlyrg — i(sy)yy+). From (33), it is now easy to obtain the
following brackets:

WP xly=0  (3p%x)} = p/ +iep’x/

(P2 Py =0 {p;, 3x%) = x; +iex’p; (34)
{E,x'} = x/ + 2icEx/ —iex?p’ {pj, E} = pj + 2icEp; — iepzxj.

Let us now introduce one more invariant function:

A =1+ 2icE — 2x2p? (35)
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(following the method of [24]). From (34) it follows that
{A, x7} = 2ieAx’ {pj, A} = 2iep; A. (36)

Denote by HolY) the algebra of holomorphic functions on a complex manifdldRecall
that any holomorphic map: Y — Z (of complex manifolds) defines a linear multiplicative
map ®: Hol(Z) — Hol(Y) by the pullback:®(f) = fo¢. Similarly, any anti-holomorphic
mapy: Y — Z defines an anti-linear multiplicative map: Hol(Z) — Hol(Y) by pullback
followed by the complex conjugation¥(f) = fo¢. Using A, we define an anti-
holomorphic map/ from

PC = {(x,p) e (T*"'V)®: A #£0} c (T*V)®©
into (T*V)® by

. 4 CLiep?y:
wehy=x (=2 (37)
Since
2 H 2.2
p E +lepx 1
W(p?) = W(E) = W(A) = — 38
(P9 A (E) A (A) A (38)

the underlying mapy mapsPC into PC. Moreover, sincel (¥ (x/)) = x/ and

P02 P02 2
p,-—i—jl\sp xj):A<pj+lep X —iepx)—

V(W (p)) =W < A A

the anti-holomorphic mag/: P© — PC is an involution. Therefore we can define the
correspondingeal form P of PC as the set of fixed points af:
P:={zeP’:y@) =z (39)

The antilinear multiplicative involutiont corresponding to the mag will be henceforth
denoted by a star:

. . 4 iep2x;
() =x’ (pj))" = LRE ] Agp ay (40)
Let us collect once more the basic formulae (38):
2 ien24-2
o P . E+iepx . 1
(r°) A A A

Pi={(x,p): (&))" =x/, (p)* = pj).
The fundamental theorem of this section says that the star operation is compatible with the
Poisson brackets (19).

Theorem 6.1 The Poisson structure (19) is real with respect to the star operation (40):
{figy={r"¢"" (41)

Proof. We have to prove (41) in two cases: {i)= p;, g = x* and (i) f = p;, § = px-
The casef = x/, g = x* is trivial.
(i) We setT; := p; +iep?x;. Since

{pj, XY = 8% — (p)* o)y, x™

and

T; 1 ,
((pp*, ") = {[(,xk} = X({Tj,xk} — 2ieT;x*)
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we have to show that

{T;. x*} = 2ieTix* = A8 — Ti(wy)ly x™. (42)
Since

{T;, Xk = Sjk — pz(w;\)jlfnxm + i5(2xjpk + 2i£p2xjxk + ng,-lr,qu”xmx")
the left-hand side of (42) equals

8% — pr(w) i, x™ +ie2(x; p* — pix") + pPgjirm,x"x")
whereas the right-hand side of (42) equals

(L+ 2ieE — e2x2p?)8;* — (py +iepx) (wy)j, "
Since

Pr((wa) i, — @) )xX™ = 2py(—isy)jh x" = —=2ie(ES;* + p;x* — x; p*)
(cf (33)), it follows that (42) is equivalent to

isngj;r,l,fnxmx” = —82X2p28jk — ispzx,(wix)éljnxm
or
igjlr,l,fnx"’x" = —£x28jk - ixl(wi;‘)%xm.

Taking into account
8Ty = —8&imT (43)
(r'* belongs tog with respect to indices, m), it means that (42) is equivalent to
iGim (isx)jflxmx” = ex?st
which can be easily verified.
(i) Since
{Tj, A} = 2ieT; A

we have

T T\ _ (T T}
A A A2
Therefore it is sufficient to show that
{Tj, T} = TiTurjy.
We have
{T;, Ti} = {pj, pe) +iep*({pj, xi} — {px, ;1) + (8){p°xj, pPxi)
= pipmriy +iep?[—pirjax" gax + pirgex" 8aj + 2ie(pjxi — x; pi)]
—e2p?[p?(x;, 1} + 2(pexj — xipy)].
Since

_plrjl'fnxmgak = Plxmrjl‘m
(by the argument similar to (43)), we have finally
{Tj. Ty = pipwriyt +iep? pixm(riy — ) + (iep®)xixnriyl

= (p1 +iep®x))(pm + iep®xn)riy.
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Corollary. P is endowed with a structure of a real analytic Poisson manifoldfy,lfo
are two real analytic functions oA, then their Poisson bracket is defined by

{fo, go} == {f. g}lp

where f, g are the (local) holomorphic extensions fi, go to PC (by (41), the restriction
of {f, g} to P is real).
P is the required phase space(@f, ry).

7. Poisson action ofSU (n) on C™

Here we treaty = C" as a real manifold{ = R?"). Specifying (2) to the case &U (n)
we get the following standargtmatrix (see (6) for the basis ofi(n))

r =8% Z(Ejk —ekj)/\ J(ejk +€kj) (44)
Jj<k
whereJ:V — V is the complex structure df (multiplication by the imaginary unit). From

now on we set = 1 (arbitrarye will be restored in the final formulae). It is convenient to
work with the complexificationV® = V @iV and the complex-linear embedding

Voze 8= %(z—i]z)evc.
We have
z=275+2C Jz =i =z

and the typical notation
a\" 9
C
(ex) <3xk> PR

e’z = (/)" + (e*2)C = (;2)° + (¢;20)C = 2X9; + 2*5;.
In this notation, the fundamental bi-vector field is as follows,
rv(@) =1 sgtk — j)(3V) A Vi = 3V; A Vi + 27170 A ) (45)
Jjk

Note that

whereV, = z¥0;, V; := 7¥0,.
Lemma 7.1 [ry,rv](z) = —|zlI?Jz A o, Where
o = 2i Z ok A 5k
k

is the canonical constant bi-vector 6h= C" = R?".

Proof. Taking into account

27120k A Bk, Va A V] = 29 (=) A2/ Vi, Va A Vi)
= — 0 A[(27808, — 29850k) A Vi + Va A (27820, — 288 30)]
= — 1220 A O AL — 8DV — (8] — 8)) V]

and

[/ [P0 A Ok, 124170 A 3p] = [27 0k A 278k, 290 A 2903]
= 270k, 2] AZ/0k A Z90p + 27 0 A 290 A 270k, Z49p)
=718 A0 A (27808, — 7°810) + CC
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(+cc means ‘plus complex conjugated terms’), we see thatrd,](z) equals

— > sgrik — j)sgnb — a)

jkab
) {127 12[(8¢ — 8)V) — (82 — 8])Val + 212°128] V) A % A 3 + CC
= —2) sgnk —j)sgnb - a)
jkab
x[12712(8¢ — 8)Vj + 12128] V] A 3 A 3 + CC
= —2) ) sgnk— j)sgnb —a)
kb ja
x[127 12(8¢ — 87) + 12°128]1V A 0k A & + CC.
Note that

> " sgntk — j) sgnb — a)(127 128§ — 127 28] + |2°126)) Vi A A B
ja

= D127 A(sgnk — j) sgnib — k) + sgrtb — k) sgn(j — b)
J
+sgn(j — b) sgnk — j))
and
sgnk — j) sgnb — k) + sgnib — k) sgr(j — b) +sgn(j — b) sgnk — j) = -1
for b # k. It follows that

[rv, rvl(@) = 21217 Y (Vo = Vi) A Y e A bk = —l12l17 Y i(Vs = Vo) A Y 2i4 A b
b k b k

O

Corollary. For any classical-matrix 7 on g = su(n) there is a constant such that
[Fv,7v] = —cllz|?Jz A . The Poisson structures, on V for which the action ofSU (n)
on V is Poisson are exactly bi-vector fields

Ty = FV —+ A (46)
such that the bi-vector fielch on V is SU (n)-invariant and satisfies
[A, Alz) = clizlIJz A 0. (47)

It is easy to show that alU (n)-invariant bi-vector fieldsA on V are of the following
form:

A = lamg+ bz A Jz (48)

wherea = a(||z||® and b = b(||z||?) are arbitrary functions of|z||?>. We shall write
condition (47) in terms of these functions.

Lemma 7.2 [A, Al(z) = ||z||?Jz A o if and only if
aa' +b(a—ad't) =t. (49)

Heret = ||z||? and prime means differentiating with respect to the variable
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Proof. If K, L are bi-vector fields and’, g are functions, then
[fK,gL]l = fg[K, L] — fK(dg) A —gK A L(dg) (50)
where byK (dg) we denote the contraction & with dg on the first place. In particular,

[fK, fK] = f*—2fK AK(df).

Using
moGdlzI®) = =7z @A JDGII?) = |1zIPTz
and
[0,z AJz] =20z Ao
we obtain
[%ang, %ano] =ad Jz Ao
[bzAJz,bzAJz] =0
[Samo, 2bz A Jz] = 3b(a —d'|z]%) Tz A 0.
From this, (49) follows immediately. O

Of course, the easy way to solve (49) is to write

t —aa

b= (51)

a—a't

but in this way we have no control of regularity over these functions and we do not see
the simplest cases. To pick up the simplest cases, let us comsidemost quadratic, i.e.
a = ag + ait, b = by, wWhereay, a1, bg are some constants. Inserting this formaofnd b
in (49) gives the following two cases:

(i) ag = 0, a; = +1, by arbitrary;

(ii) ao arbitrary,a; = £1, bg = F1.
One of the simplest non-quadratic solutions foiis the following solution of degree four:

(i) a =h =constant£ 0, b =t/ h.

An example of a non-singular rational solution is givendoy= 1 — ¢2 (in this case the
denominator of (51) is positivez — a’t = 1+ t?).

Another way to pick up a simple case is to assume thas (asry) tangential to the
sphered|z|| = constant. It is easy to show that this conditions holds if and ondy=f br.
In this case (49) reduces to

ab =1t.

It means that: = £¢, b = £1. This is a special case of type (i) above.

We end by listing the explicit form of the Poisson brackets corresponding to the
mentioned cases. From the general form (46) and (48) with the standaatrix (44),
we obtain

(27,5 =iez/ZF for j <k (52)

(z7,7%) = —iebz/Z* for j £k (53)

{z/, 2} =iy _sgnj — k) - |z*| +iea — ieb|z’| (54)
k

(we have restored the parametgr Now we list the cases which seem to be most interesting.
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(1) PoissonSU (n)-spheres According to the discussion above, there are only two
Poisson structures a” solving our problem and tangential to the spheres, namely

{2/, 2"y =iez/ for j <k

(27,75} = —ioebz/z* for j £k

(. ) =ie@llz|? —olel + Y sgrj — k) - [25) = 20ie Y [2F2
k ok<oj

whereo = +1. The functionz — ||z||? is a Casimir function of this Poisson structure (and
can be fixed, which leads to a sphes&—1).

(2) Twisted annihilation and creation ‘operators'Settingsz = sag in case (ii) above,
we obtain

{z/, 2"} = iez/ for j <k

{/.7") = ioebz /7 for j #k

(/) =ihtie@lzl? +olzl + ) sgnj — k) - []) = ih +20ie Y |
k ok<oj

whereo = +1. This is the Poisson version of the ‘twisted canonical commutation relations’
of [25] (see also [26]). It may describe the phase space of a Poisson deformed harmonic
oscillator.

(3) The non-quadratic brackets corresponding to case (iii) above are given by

(27,25} = iez/ 7 for j <k (55)
. L& .

{27,z = —lﬁnznzzfz" for j #k (56)
L . . 1 .

{z/,77} =ieh + ne( — EIIZIIZIZJIZ + ijsgr(j —k)- |z"|>. (57)

Problem What is the quantum counterpart of condition (49)? What is the quantum
counterpart of relations (56) and (57)?
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